Image noise and dose performance across a clinical population: Patient size adaptation as a metric of CT performance.
نویسندگان
چکیده
PURPOSE Modern CT systems adjust X-ray flux accommodating for patient size to achieve certain image noise values. The effectiveness of this adaptation is an important aspect of CT performance and should ideally be characterized in the context of real patient cases. The objective of this study was to characterize CT performance with a new metric that includes image noise and radiation dose across a clinical patient population. MATERIALS AND METHODS The study included 1526 examinations performed by three CT scanners (one GE Healthcare Discovery CT750HD, one GE Healthcare Lightspeed VCT, and one Siemens SOMATOM definition Flash) used for two routine clinical protocols (abdominopelvic with contrast and chest without contrast). An institutional monitoring system recorded all the data involved in the study. The dose-patient size and noise-patient size dependencies were linearized by considering a first-order approximation of analytical models that describe the relationship between ionization dose and patient size, as well as image noise and patient size. A 3D-fit was performed for each protocol and each scanner with a planar function, and the root mean square error (RMSE) values were estimated as a metric of CT adaptability across the patient population. RESULTS The data show different scanner dependencies in terms of adaptability: the RMSE values for the three scanners are between 0.0385 HU1/2 and 0.0215 HU1/2 . CONCLUSION A theoretical relationship between image noise, CTDIvol , and patient size was determined based on real patient data. This relationship may be interpreted as a new metric related to the scanners' adaptability concerning image quality and radiation dose across a patient population. This method could be implemented to investigate the adaptability related to other image quality indexes and radiation dose in a clinical population.
منابع مشابه
Metal Artifact Reduction of Dental Fillings in Head and Neck CT Images
Introduction: The issue of metal artifact and its reduction is as old as the clinical use of computed tomography itself. When metal objects such as dental fillings, hip prostheses or surgical clips are present in the computed tomography (CT) field of view (FOV), make severe artifacts that reduce the image quality and accuracy of CT numbers. They can lead to unreliable ...
متن کاملInvestigation of dosimetric characteristic of NIPAM polymer gel using x-ray CT
Introduction: Polymer gel dosimeters contain chemical materials sensitive to the radiation which are polymerized by the radiation as a function of absorbed dose. So information of spatial dose distribution can be extracted by imaging from irradiated gel. Among imaging techniques, computed tomography (CT) poses as an attractive method because of practical advantages such as acce...
متن کاملDose Reduction Methods in Chest Computed Tomography
Introduction: Computed tomography is one of the most powerful tools for investigating thorax disease, because it shows progression of lung disease much clearer than chest radiography. Technical advances in CT scanners have led to some abilities for CT scanners such as coverage of larger volume, lower noise and ability for acquiring image in one respiratory phase. However, this will be accompani...
متن کاملA New Method for Estimating of Patient Effective Dose in Computed Tomography Based on Body Mass Index: Performance of the Method in Abdomen-Pelvic Examination
Introduction: The CT Provide high quality images, especially in low-contrast soft tissue, are another advantage. Along with all the benefits that the CT scans which have, the patient dose of this modality is much greater than other methods. As a result, medical imaging community must ensure that the benefits of radiological examination for each patient are higher than related r...
متن کاملA comparative study based on image quality and clinical task performance for CT reconstruction algorithms in radiotherapy
CT image reconstruction is typically evaluated based on the ability to reduce the radiation dose to as-low-as-reasonably-achievable (ALARA) while maintaining acceptable image quality. However, the determination of common image quality metrics, such as noise, contrast, and contrast-to-noise ratio, is often insufficient for describing clinical radiotherapy task performance. In this study we desig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 44 6 شماره
صفحات -
تاریخ انتشار 2017